• D.A.E IN ELECTRONICS

    Electronics deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies. The nonlinear behaviour of active components and their ability to control electron flows makes amplification Read more[...]

  • D.A.E IN ELECTRICAL

    Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics and electromagnetism. The field first became an identifiable occupation in the late nineteenth century after commercialization of the electric telegraph and electrical power supply. It now covers a range of subtopics including power, Read more[...]

  • D.A.E IN TELECOMMUNICATION

    Telecommunication is the science and practice of transmitting information by electromagnetic means. Communication is talking to someone or thing not necessarily through technological means. Telecommunication, however, is talking through technology meaning phones, Internet, radio etc... Read more[...]

  • D.A.E IN COMPUTER INFORMATION TECHNOLOGY

    Information technology (IT) is a branch of knowledge concerned with the development, management, and use of computer-based information systems. Humans have been storing, retrieving, manipulating and communicating information since the Sumerians in Mesopotamia developed writing in about 3000 BC, but the term "information technology" in its modern sense first appeared in a 1958 article published in the Harvard Business Review; authors Read more[...]

Telecommunication is the science and practice of transmitting information by electromagnetic means.
Communication is talking to someone or thing not necessarily through technological means. Telecommunication, however, is talking through technology meaning phones, Internet, radio etc...
In earlier times, telecommunications involved the use of visual signals, such as beacons, smoke signals, semaphore telegraphs, signal flags, and optical heliographs, or audio messages such as coded drumbeats, lung-blown horns, and loud whistles.
In modern times, telecommunications involves the use of electrical devices such as the telegraph, telephone, and teleprinter, as well as the use of radio and microwave communications, as well as fiber optics and their associated electronics, plus the use of the orbiting satellites and the Internet.
A revolution in wireless telecommunications began in the 1900s (decade) with pioneering developments in wireless radio communications by Nikola Tesla and Guglielmo Marconi. Marconi won the Nobel Prize in Physics in 1909 for his efforts. Other highly notable pioneering inventors and developers in the field of electrical and electronic telecommunications include Charles Wheatstone and Samuel Morse (telegraph), Alexander Graham Bell (telephone), Edwin Armstrong, and Lee de Forest (radio), as well as John Logie Baird and Philo Farnsworth (television).

The world's effective capacity to exchange information through two-way telecommunication networks grew from 281 petabytes of (optimally compressed) information in 1986, to 471 petabytes in 1993, to 2.2 (optimally compressed) exabytes in 2000, and to 65 (optimally compressed) exabytes in 2007. This is the informational equivalent of 2 newspaper pages per person per day in 1986, and 6 entire newspapers per person per day by 2007. Given this growth, telecommunications play an increasingly important role in the world economy and the worldwide telecommunication industry's revenue was estimated to be $3.85 trillion in 2008. The service revenue of the global telecommunications industry was estimated to be $1.7 trillion in 2008, and is expected to touch $2.7 trillion by 2013.

History:

Ancient systems:

Greek hydraulic semaphore systems were used as early as the 4th century BC. The hydraulic semaphores, which worked with water filled vessels and visual signals, functioned as optical telegraphs. However, they could only utilize a very limited range of pre-determined messages, and as with all such optical telegraphs could only be deployed during good visibility conditions
During the Middle Ages, chains of beacons were commonly used on hilltops as a means of relaying a signal. Beacon chains suffered the drawback that they could only pass a single bit of information, so the meaning of the message such as "the enemy has been sighted" had to be agreed upon in advance. One notable instance of their use was during the Spanish Armada, when a beacon chain relayed a signal from Plymouth to London that signaled the arrival of the Spanish warships

Systems since the Middle Ages:

In 1792, Claude Chappe, a French engineer, built the first fixed visual telegraphy system (or semaphore line) between Lille and Paris. However semaphore systems suffered from the need for skilled operators and the expensive towers at intervals of 10–30 kilometers (6–20 mi). As a result of competition from the electrical telegraph, Europe's last commercial semaphore line in Sweden was abandoned in 1880.

Telegraph and telephone:

 


The first commercial electrical telegraph was constructed by Sir Charles Wheatstone and Sir William Fothergill Cooke, and its use began on April 9, 1839. Both Wheatstone and Cooke viewed their device as "an improvement to the [already-existing, so-called] electromagnetic telegraph" not as a new device.
The businessman Samuel F.B. Morse and the physicist Joseph Henry of the United States developed their own, simpler version of the electrical telegraph, independently. Morse successfully demonstrated this system on September 2, 1837. Morse's most important technical contribution to this telegraph was the rather simple and highly efficient Morse Code, which was an important advance over Wheatstone's complicated and significantly more expensive telegraph system. The communications efficiency of the Morse Code anticipated that of the Huffman code in digital communications by over 100 years, but Morse and his associate Alfred Vail developed the code purely empirically, unlike Huffman, who gave a detailed theoretical explanation of how his method worked.
The first permanent transatlantic telegraph cable was successfully completed on 27 July 1866, allowing transatlantic electrical communication for the first time. An earlier transatlantic cable had operated for a few months in 1859, and among other things, it carried messages of greeting back and forth between President James Buchanan of the United States and Queen Victoria of the United Kingdom
However, that transatlantic cable failed soon, and the project to lay a replacement line was delayed for five years by the American Civil War. Also, these transatlantic cables would have been completely incapable of carrying telephone calls even had the telephone already been invented. The first transatlantic telephone cable (which incorporated hundreds of electronic amplifiers) was not operational until 1956
The conventional telephone now in use worldwide was first patented by Alexander Graham Bell in March 1876. That first patent by Bell was the master patent of the telephone, from which all other patents for electric telephone devices and features flowed. Credit for the invention of the electric telephone has been frequently disputed, and new controversies over the issue have arisen from time-to-time. As with other great inventions such as radio, television, the light bulb, and the digital computer, there were several inventors who did pioneering experimental work on voice transmission over a wire, and then they improved on each other's ideas. However, the key innovators were Alexander Graham Bell and Gardiner Greene Hubbard, who created the first telephone company, the Bell Telephone Company in the United States, which later evolved into American Telephone & Telegraph (AT&T).
The first commercial telephone services were set up in 1878 and 1879 on both sides of the Atlantic in the cities of New Haven, Connecticut, and London, England.

1 comment:

You can request for more Books by posting a comment!

Recent Comments

Recent Comments